extension | φ:Q→Aut N | d | ρ | Label | ID |
(C22xC22).1C22 = C11xC23:C4 | φ: C22/C1 → C22 ⊆ Aut C22xC22 | 88 | 4 | (C2^2xC22).1C2^2 | 352,48 |
(C22xC22).2C22 = C11xC4.4D4 | φ: C22/C1 → C22 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).2C2^2 | 352,159 |
(C22xC22).3C22 = C11xC42:2C2 | φ: C22/C1 → C22 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).3C2^2 | 352,161 |
(C22xC22).4C22 = C11xC4:1D4 | φ: C22/C1 → C22 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).4C2^2 | 352,162 |
(C22xC22).5C22 = C22.2D44 | φ: C22/C1 → C22 ⊆ Aut C22xC22 | 88 | 4 | (C2^2xC22).5C2^2 | 352,12 |
(C22xC22).6C22 = C23:Dic11 | φ: C22/C1 → C22 ⊆ Aut C22xC22 | 88 | 4 | (C2^2xC22).6C2^2 | 352,40 |
(C22xC22).7C22 = C23.11D22 | φ: C22/C1 → C22 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).7C2^2 | 352,72 |
(C22xC22).8C22 = C22:Dic22 | φ: C22/C1 → C22 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).8C2^2 | 352,73 |
(C22xC22).9C22 = C23.D22 | φ: C22/C1 → C22 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).9C2^2 | 352,74 |
(C22xC22).10C22 = C22:C4xD11 | φ: C22/C1 → C22 ⊆ Aut C22xC22 | 88 | | (C2^2xC22).10C2^2 | 352,75 |
(C22xC22).11C22 = Dic11:4D4 | φ: C22/C1 → C22 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).11C2^2 | 352,76 |
(C22xC22).12C22 = C22:D44 | φ: C22/C1 → C22 ⊆ Aut C22xC22 | 88 | | (C2^2xC22).12C2^2 | 352,77 |
(C22xC22).13C22 = D22.D4 | φ: C22/C1 → C22 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).13C2^2 | 352,78 |
(C22xC22).14C22 = D22:D4 | φ: C22/C1 → C22 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).14C2^2 | 352,79 |
(C22xC22).15C22 = Dic11.D4 | φ: C22/C1 → C22 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).15C2^2 | 352,80 |
(C22xC22).16C22 = C22.D44 | φ: C22/C1 → C22 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).16C2^2 | 352,81 |
(C22xC22).17C22 = D4xDic11 | φ: C22/C1 → C22 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).17C2^2 | 352,129 |
(C22xC22).18C22 = C23.18D22 | φ: C22/C1 → C22 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).18C2^2 | 352,130 |
(C22xC22).19C22 = C44.17D4 | φ: C22/C1 → C22 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).19C2^2 | 352,131 |
(C22xC22).20C22 = C44:2D4 | φ: C22/C1 → C22 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).20C2^2 | 352,133 |
(C22xC22).21C22 = Dic11:D4 | φ: C22/C1 → C22 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).21C2^2 | 352,134 |
(C22xC22).22C22 = C44:D4 | φ: C22/C1 → C22 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).22C2^2 | 352,135 |
(C22xC22).23C22 = C2xD4:2D11 | φ: C22/C1 → C22 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).23C2^2 | 352,178 |
(C22xC22).24C22 = C22:C4xC22 | φ: C22/C2 → C2 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).24C2^2 | 352,150 |
(C22xC22).25C22 = C11xC42:C2 | φ: C22/C2 → C2 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).25C2^2 | 352,152 |
(C22xC22).26C22 = D4xC44 | φ: C22/C2 → C2 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).26C2^2 | 352,153 |
(C22xC22).27C22 = C11xC4:D4 | φ: C22/C2 → C2 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).27C2^2 | 352,156 |
(C22xC22).28C22 = C11xC22:Q8 | φ: C22/C2 → C2 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).28C2^2 | 352,157 |
(C22xC22).29C22 = C11xC22.D4 | φ: C22/C2 → C2 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).29C2^2 | 352,158 |
(C22xC22).30C22 = C4oD4xC22 | φ: C22/C2 → C2 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).30C2^2 | 352,191 |
(C22xC22).31C22 = C22.C42 | φ: C22/C2 → C2 ⊆ Aut C22xC22 | 352 | | (C2^2xC22).31C2^2 | 352,37 |
(C22xC22).32C22 = C2xC4xDic11 | φ: C22/C2 → C2 ⊆ Aut C22xC22 | 352 | | (C2^2xC22).32C2^2 | 352,117 |
(C22xC22).33C22 = C2xDic11:C4 | φ: C22/C2 → C2 ⊆ Aut C22xC22 | 352 | | (C2^2xC22).33C2^2 | 352,118 |
(C22xC22).34C22 = C44.48D4 | φ: C22/C2 → C2 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).34C2^2 | 352,119 |
(C22xC22).35C22 = C2xC44:C4 | φ: C22/C2 → C2 ⊆ Aut C22xC22 | 352 | | (C2^2xC22).35C2^2 | 352,120 |
(C22xC22).36C22 = C23.21D22 | φ: C22/C2 → C2 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).36C2^2 | 352,121 |
(C22xC22).37C22 = C2xD22:C4 | φ: C22/C2 → C2 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).37C2^2 | 352,122 |
(C22xC22).38C22 = C4xC11:D4 | φ: C22/C2 → C2 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).38C2^2 | 352,123 |
(C22xC22).39C22 = C23.23D22 | φ: C22/C2 → C2 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).39C2^2 | 352,124 |
(C22xC22).40C22 = C44:7D4 | φ: C22/C2 → C2 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).40C2^2 | 352,125 |
(C22xC22).41C22 = C2xC23.D11 | φ: C22/C2 → C2 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).41C2^2 | 352,147 |
(C22xC22).42C22 = C24:D11 | φ: C22/C2 → C2 ⊆ Aut C22xC22 | 88 | | (C2^2xC22).42C2^2 | 352,148 |
(C22xC22).43C22 = C22xDic22 | φ: C22/C2 → C2 ⊆ Aut C22xC22 | 352 | | (C2^2xC22).43C2^2 | 352,173 |
(C22xC22).44C22 = C22xC4xD11 | φ: C22/C2 → C2 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).44C2^2 | 352,174 |
(C22xC22).45C22 = C22xD44 | φ: C22/C2 → C2 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).45C2^2 | 352,175 |
(C22xC22).46C22 = C2xD44:5C2 | φ: C22/C2 → C2 ⊆ Aut C22xC22 | 176 | | (C2^2xC22).46C2^2 | 352,176 |
(C22xC22).47C22 = C23xDic11 | φ: C22/C2 → C2 ⊆ Aut C22xC22 | 352 | | (C2^2xC22).47C2^2 | 352,186 |
(C22xC22).48C22 = C11xC2.C42 | central extension (φ=1) | 352 | | (C2^2xC22).48C2^2 | 352,44 |
(C22xC22).49C22 = C4:C4xC22 | central extension (φ=1) | 352 | | (C2^2xC22).49C2^2 | 352,151 |
(C22xC22).50C22 = Q8xC2xC22 | central extension (φ=1) | 352 | | (C2^2xC22).50C2^2 | 352,190 |